Physiological responses of gopher tortoises (Gopherus polyphemus) to trapping

Author:

Goessling Jeffrey M12,Mendonça Mary T1

Affiliation:

1. Department of Biological Sciences, Auburn University, AL 36849 USA

2. Natural Sciences Collegium, Eckerd College, 4200 54th Ave S, St Petersburg FL 33711 USA

Abstract

Abstract With a growing number of species of conservation concern, understanding the physiological effects of routine sampling of vertebrate species remains a priority to maintain the welfare status of wildlife and ensure such activities are not counter to conservation goals. The gopher tortoise (Gopherus polyphemus) is a species of conservation concern throughout its range and is among the most frequently trapped turtles globally (for both research and conservation activities). Several studies have found equivocal results on the effects of trapping and handling on the glucocorticoid stress response. In this study, we tested how multiple physiological biomarkers (i.e. plasma lactate, corticosterone (cort), heterophil:lymphocyte ratio (HLR) and bactericidal ability (BA)) respond to four different combinations of trapping conditions in comparison to baseline reference sampling. We found that trapping and handling of gopher tortoises yielded a rapid rise in plasma lactate concentration followed by elevations of cort and stress-associated immune changes. In visibly distressed animals that were in traps for fewer than 2 hours, lactate, cort, HLR and BA were all elevated, and generally more so than animals that remained calm in traps for a similar amount of time. Animals that had been trapped and then held for a 3-hour restraint showed similar degrees of physiological alteration as those that showed outward signs of distress. This study demonstrates that trapping may yield physiological disturbances in gopher tortoises, although the intensity of this response is highly variable between individuals and the duration of such alterations remains unknown. This research emphasizes the need for continued work to refine trapping and handling processes in an effort to minimize impacts on individuals and populations.

Funder

Alabama Department of Conservation and Natural Resources, Wildlife and Freshwater Fisheries Division

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3