Monarch caterpillars are robust to combined exposure to the roadside micronutrients sodium and zinc

Author:

Shephard Alexander M,Mitchell Timothy S1,Snell-Rood Emilie C1

Affiliation:

1. Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, Saint Paul, MN 55108, USA

Abstract

Abstract Human activities are increasing the environmental availability of micronutrients, including sodium and some essential metals. Micronutrients are often limiting in animal diets but may have negative effects when consumed in excess. Though prior research has documented how elevated exposure to individual micronutrients can impact organismal development and fitness, we know less about combined effects of multiple micronutrients. In the wild, monarch butterfly larvae (Danaus plexippus) commonly consume plants in roadside habitats that contain elevated levels of sodium (from road salt) and zinc (from vehicle wear-and-tear). We reared monarch caterpillars to adulthood to test individual and combined effects of dietary sodium and zinc on components of fitness, sodium-linked phenotypes (proxies for neural and flight muscle development) and concentrations of sodium and zinc in adult butterflies. Monarch survival was not impacted by elevated sodium or zinc individually or in combination. Yet, monarchs feeding on sodium-treated milkweed developed relatively larger eyes, consistent with a positive effect of sodium on neural development. Measurements of element concentrations in butterfly and plant tissue indicated that monarchs had higher zinc levels than those present in zinc-treated milkweed but lower sodium levels than those present in sodium-treated milkweed. Monarchs developing on sodium-treated milkweed also had prolonged development time, which might be a cost associated with developing extra neural tissue or investing in mechanisms to excrete excess dietary sodium during the larval stage. Our results indicate that sodium, more than zinc, is likely influencing phenotypic development and performance of insect pollinators in roadside habitats. Yet, in contrast to previous work, our experiment suggests that the highest levels of sodium found along roads are not always harmful for developing monarchs. Future work could consider how potentially stressful effects of micronutrients could be mitigated by increased macronutrient availability or how developmental factors such as migratory status might increase micronutrient requirements.

Funder

NASA Ames Research Center

Minnesota Environment and Natural Resources Trust Fund

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3