Controlled experiments to explore the use of a multi-tissue approach to characterizing stress in wild-caught Pacific halibut (Hippoglossus stenolepis)

Author:

Kroska Anita C1,Wolf Nathan1,Planas Josep V12,Baker Matthew R13,Smeltz T Scott1,Harris Bradley P1

Affiliation:

1. Fisheries, Aquatic Science, and Technology Laboratory, Alaska Pacific University, 4101 University Dr., Anchorage, AK 99508, USA

2. International Pacific Halibut Commission, 2320 W Commodore Way, Seattle, WA 98199, USA

3. North Pacific Research Board, 1007 W 3rd Ave #100, Anchorage, AK 99501, USA

Abstract

Abstract The integration of multiple tissues in physiological and ecological analyses can enhance methodological approaches, increase applications for data and extend interpretation of results. Previous investigations of the stress response in fish have focused primarily on cortisol levels in a single matrix—blood plasma—which confines interpretations of cortisol levels to a short temporal frame. Epidermal mucus has been proposed as an alternative or complement to plasma that may provide a view to cortisol levels over a different temporal window allowing comparative assessment. Here, we explore the potential for multi-tissue cortisol analysis using both plasma and epidermal mucus in Pacific halibut (Hippoglossus stenolepis). The relative timing at which cortisol increased and decreased in the two matrices as well as cortisol concentrations at estimated peak levels were compared in two trials after (i) inducing cortisol synthesis by adrenocorticotropic hormone (ACTH1–24) administration and (ii) inducing cortisol elimination using cortisol (hydrocortisone, 98%) injection. The ACTH treatment elicited a peak plasma cortisol response approximately 12 hours post-injection, while mucus cortisol concentrations peaked later at approximately 62 hours post-injection. Exogenous cortisol treatments suggested relatively little transfer of cortisol from plasma to mucus, potentially reflecting differential effects of endogenous and exogenous cortisol. Our results suggest the potential utility of mucus as a sampling matrix that provides an extended window for detection of the stress response as compared to plasma. Results also suggest the utility of a multi-tissue approach to cortisol analysis with potential applications to applied fisheries research. Increased understanding of the relative scale of the cortisol response to stress (e.g. capture) will allow researchers and managers to better interpret the physiological condition and survival outcome of fish subjected to regulatory discard.

Funder

Groundfish Forum

National Oceanic and Atmospheric Administration Saltonstall-Kennedy Grant Program

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3