The impacts of diel thermal variability on growth, development and performance of wild Atlantic salmon (Salmo salar) from two thermally distinct rivers

Author:

Andrew Sean1,Swart Sula1,McKenna Stephanie1,Morissette Jenna1,Gillis Carole-Anne2,Linnansaari Tommi3,Currie Suzanne4,Morash Andrea J1ORCID

Affiliation:

1. Mount Allison University Department of Biology, , 62 York St., Sackville, NB E4L 1G7, Canada

2. Gespe’gewa’gi Institute of Natural Understanding , 1 Marshall Way, Listuguj, QC, G0C 2R0, Canada

3. University of New Brunswick Department of Biology, Faculty of Forestry and Environmental Sciences, and Canadian Rivers Institute, , 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada

4. Acadia University Department of Biology, , 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada

Abstract

Abstract Temperature in many natural aquatic environments follows a diel cycle, but to date, we know little on how diel thermal cycles affect fish biology. The current study investigates the growth, development and physiological performance of wild Atlantic salmon collected from the Miramichi and Restigouche rivers (NB, Canada). Fish were collected as parr and acclimated to either 16–21 or 19–24°C diel thermal cycles throughout the parr and smolt life stages. Both Miramichi and Restigouche Atlantic salmon parr grew at similar rates during 16–21 or 19–24°C acclimations. However, as smolts, the growth rates of the Miramichi (−8% body mass day−1) and Restigouche (−38% body mass day−1) fish were significantly slower at 19–24°C, and were in fact negative, indicating loss of mass in this group. Acclimation to 19–24°C also increased Atlantic salmon CTmax. Our findings suggest that both life stage and river origin impact Atlantic salmon growth and performance in the thermal range used herein. These findings provide evidence for local adaptation of Atlantic salmon, increased vulnerability to warming temperatures, and highlight the differential impacts of these ecologically relevant diel thermal cycles on the juvenile life stages in this species.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3