Chemical niches and ionoregulatory traits: applying ionoregulatory physiology to the conservation management of freshwater fishes

Author:

Zimmer Alex M1,Goss Greg G1,Glover Chris N12

Affiliation:

1. Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada

2. Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, T9S 3A3, Canada

Abstract

Abstract Alterations in water chemistry can challenge resident fish species. More specifically, chemical changes that disrupt ion balance will negatively affect fish health and impact physiological and ecological performance. However, our understanding of which species and populations are at risk from ionoregulatory disturbances in response to changing freshwater environments is currently unclear. Therefore, we propose a novel framework for incorporating ionoregulatory physiology into conservation management of inland fishes. This framework introduces the concepts of fundamental chemical niche, which is the tolerable range of chemical conditions for a given species based on laboratory experiments, and realized chemical niche, which is the range of chemical conditions in which a species resides based on distribution surveys. By comparing these two niches, populations that may be at risk from ionoregulatory disturbances and thus require additional conservation considerations can be identified. We highlight the potential for commonly measured ionoregulatory traits to predict fundamental and realized chemical niches but caution that some traits may not serve as accurate predictors despite being important for understanding ionoregulatory mechanisms. As a sample application of our framework, the minimum pH distribution (realized niche) and survival limit pH (fundamental niche) of several North American fishes were determined by systematic review and were compared. We demonstrate that ionoregulatory capacity is significantly correlated with a realized niche for many species, highlighting the influence of ionoregulatory physiology on fish distribution patterns along chemical gradients. Our aim is that this framework will stimulate further research in this field and result in a broader integration of physiological data into conservation management decisions for inland waters.

Funder

Campus Alberta Innovates Program

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Reference197 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3