Reproductive phases coincide with changes in morphology and photosynthetic physiology in an endangered cycad species

Author:

Krieg Christopher P1,Gosetti Sophia12,Watkins Jr James E3,Griffith M Patrick4,McCulloh Katherine A1

Affiliation:

1. University of Wisconsin Department of Botany, , 340 Lincoln Dr., Madison, WI 53706, USA

2. Glacial Lakes Conservancy , 529 Ontario Ave, Sheboygan, WI 53081, USA

3. Colgate University Department of Biology, , 13 Oak Dr., Hamilton, NY 13346, USA

4. Montgomery Botanical Center , 11901 Old Cutler Rd., Coral Gables, FL 33156, USA

Abstract

Abstract Cycadales is highly endangered and one of the oldest dioecious gymnosperm lineages, making their reproductive biology highly relevant to conservation efforts and our understanding of the impact of dioecy, yet cycad reproductive ecophysiology is poorly understood. We examined how the costs associated with reproduction may impact basic physiological variation in cycad species. Specifically, we measured traits related to functional morphology and photosynthetic physiology in sterile and fertile staminate plants (‘males’) of Zamia portoricensis. Light response curves showed that sterile plants had greater light-use efficiency and maximum photosynthetic capacity per area compared with fertile plants. However, fertile and sterile plants exhibited similar respiration rates. We found significantly more nitrogen in leaves of fertile individuals, but similar nitrogen isotope composition and no differences in carbon content between sterile and fertile individuals. Despite having lower leaf-level photosynthetic rates, fertile plants had greater canopy-level photosynthesis than sterile plants, which was achieved by increasing leaf number and total leaf area. Our data suggest that sterile individuals may have greater light demands relative to fertile individuals, and fertile individuals may have greater nitrogen demands, which may be critical for successful reproductive events in staminate plants of the endangered cycad, Z. portoricensis.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Reference65 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3