Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids

Author:

FitzGerald Alyssa M12,Martin Benjamin T3

Affiliation:

1. University of California Santa Cruz Institute of Marine Sciences, , 1156 High St., Santa Cruz, CA 95064, USA

2. Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Fisheries Ecology Division, , 110 McCallister Way, Santa Cruz, CA 95060, USA

3. University of Amsterdam Department of Theoretical and Computational Ecology, , Science Park 904, 1098 XH Amsterdam, The Netherlands

Abstract

Abstract Water temperature is the major controlling factor that shapes the physiology, behaviour and, ultimately, survival of aquatic ectotherms. Here we examine temperature effects on the survival of Chinook salmon (Oncorhynchus tshawytscha), a species of high economic and conservation importance. We implement a framework to assess how incremental changes in temperature impact survival across populations that is based on thermal performance models for three freshwater life stages of Chinook salmon. These temperature-dependent models were combined with local spatial distribution and phenology data to translate spatial–temporal stream temperature data into maps of life stage-specific physiological performance in space and time. Specifically, we converted temperature-dependent performance (i.e. energy used by pre-spawned adults, mortality of incubating embryos and juvenile growth rate) into a common currency that measures survival in order to compare thermal effects across life stages. Based on temperature data from two abnormally warm and dry years for three managed rivers in the Central Valley, California, temperature-dependent mortality during pre-spawning holding was higher than embryonic mortality or juvenile mortality prior to smolting. However, we found that local phenology and spatial distribution helped to mitigate negative thermal impacts. In a theoretical application, we showed that high temperatures may inhibit successful reintroduction of threatened Central Valley spring-run Chinook salmon to two rivers where they have been extirpated. To increase Chinook salmon population sizes, especially for the threatened and declining spring-run, our results indicate that adults may need more cold-water holding habitat than currently available in order to reduce pre-spawning mortality stemming from high temperatures. To conclude, our framework is an effective way to calculate thermal impacts on multiple salmonid populations and life stages within a river over time, providing local managers the information to minimize negative thermal impacts on salmonid populations, particularly important during years when cold-water resources are scarce.

Funder

California Regional Water Quality Control Board

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3