Fine-scale conditions across mangrove microhabitats and larval ontogeny contributes to the thermal physiology of early stage brachyurans (Crustacea: Decapoda)

Author:

Vorsatz L D123,Pattrick P124,Porri F12

Affiliation:

1. Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa

2. South African Institute for Aquatic Biodiversity (SAIAB), Makhanda 6139, South Africa

3. The Swire Institute of Marine Science and the Division of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR

4. South African Environmental Observation Network, Elwandle Coastal Node, Port Elizabeth 6070, South Africa

Abstract

Abstract Most marine ectotherms require the successful completion of a biphasic larval stage to recruit into adult populations. Recruitment of larvae into benthic habitats largely depends on biological interactions and favourable environmental conditions such as the inescapable diurnal thermal and tidal exposures. Hence, assessing how different taxa metabolically respond to variations in temperature is imperative to understand the community and ecosystem dynamics at both local and global scales. The present study aimed to investigate the effects of acute temperature variation on the physiology of stage-specific brachyuran larvae collected from different microhabitats at two mangrove forests in South Africa. Results indicate that the conditions within microhabitats, which larvae experience, likely influence their physiology, based on respirometry, to short-term acute temperature exposures. Furthermore, the larval thermal optimum shifted ontogenetically to become increasingly eurythermic as individuals developed from stage I zoea through to megalopa. Mangrove crab larvae in their early stages are hence increasingly vulnerable to acute temperature exposures, which could be particularly harmful to the persistence of populations if thermally stressful events increase in magnitude and frequency.

Funder

The Rufford Foundation

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3