No consistent effect of daytime versus night-time measurement of thermal tolerance in nocturnal and diurnal lizards

Author:

Dufour Pauline C1,Tsang Toby P N1,Clusella-Trullas Susana2,Bonebrake Timothy C1

Affiliation:

1. The University of Hong Kong Area of Ecology & Biodiversity, School of Biological Sciences, Kadoorie Biological Sciences Building, , Pok Fu Lam Road, Hong Kong Special Administrative Region, China

2. Stellenbosch University Department of Botany and Zoology, , Private Bag X1, Stellenbosch 7602, South Africa

Abstract

Abstract While essential in understanding impacts of climate change for organisms, diel variation remains an understudied component of temporal variation in thermal tolerance limits [i.e. the critical thermal minimum (CTmin) and maximum (CTmax)]. For example, a higher Ctmax might be expected for an individual if the measurement is taken during the day (when heat stress is most likely to occur) instead of at night. We measured thermal tolerance (Ctmin and Ctmax) during both the daytime and night-time in 101 nocturnal and diurnal geckos and skinks in Hong Kong and in South Africa, representing six species and covering a range of habitats. We found that period of measurement (day vs. night) only affected Ctmin in South Africa (but not in Hong Kong) and that Ctmax was unaffected. Body size and species were important factors for determining Ctmax in Hong Kong and Ctmin in South Africa, respectively. Overall, however, we did not find consistent diel variation of thermal tolerance and suggest that measurements of critical thermal limits may be influenced by timing of measurement—but that such effects, when present, are likely to be context-dependent.

Funder

South African National Research Foundation

Hong Kong Research Grant Council General Research Fund

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consistent heat tolerance under starvation across seasonal morphs in Mycalesis mineus (Lepidoptera: Nymphalidae);Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3