Physiological acclimation of elk during population restoration in the Missouri Ozarks, USA

Author:

Pero Ellen M1,Chitwood M Colter2,Hildreth Aaron M3,Keller Barbara J4,Millspaugh Rami J5,Sumners Jason A6,Hansen Lonnie P3,Isabelle Jason L3,Breuner Creagh W7,Millspaugh Joshua J1

Affiliation:

1. University of Montana Wildlife Biology Program, , 32 Campus Drive, Missoula, MT 59812, USA

2. Oklahoma State University Natural Resource Ecology & Management, , 008C Agriculture Hall, Stillwater, OK 74078, USA

3. Missouri Department of Conservation , 3500 E Gans Rd, Columbia, MO 65201, USA

4. Minnesota Department of Natural Resources , 500 Lafayette Rd, St. Paul, MN 55155, USA

5. University of Missouri School of Natural Resources, , Columbia, MO 65211, USA

6. Missouri Department of Conservation , 2901 W Truman Blvd, Jefferson City, MO 65102, USA

7. University of Montana Division of Biological Sciences, , 32 Campus Drive, Missoula, MT 59812, USA

Abstract

Abstract Conservation translocations—the intentional movement of animals to restore populations—have increased over the past 30 years to halt and reverse species declines and losses. However, there are many challenges translocated animals face that should be considered for restoration programs to be successful. Understanding how long it takes for translocated animals to acclimate to these challenges and their new landscape is a critical component of post-release population management. Physiological measures such as hormone responses are increasingly used to assess animal responses and acclimation to disturbances including translocation. We determined the physiological acclimation period of elk (Cervus canadensis) translocated to the Missouri Ozarks, USA, as part of a restoration effort. From 2011 to 2013, we translocated 108 GPS-radio-collared elk from Kentucky, USA, to Missouri, USA, and collected faecal samples for glucocorticoid metabolite extraction to use as an indicator of physiological acclimation. We modelled the response of population-wide faecal glucocorticoid metabolites (fGCMs) across the initial 9 years of the restoration in response to days following release and additional site-specific covariates. Presence of white-tailed deer (Odocoileus virginianus) hunts and monthly precipitation levels were positively and negatively associated with fGCM levels, respectively. Concurrent with influences from site-specific conditions on the release landscape, fGCM levels declined following release. We identified a breakpoint in fGCM decline at ~42 days following translocation releases suggesting elk acclimated physiologically relatively quickly compared to other species. The fast physiological acclimation by Missouri elk suggests effective use of temporary post-release management efforts. Determining how quickly animals acclimate following translocations allows researchers to tailor post-release management plans to each species’ needs, thus maximizing the success of future translocation efforts while minimizing costs.

Funder

Boone and Crockett Club University Program

Rocky Mountain Elk Foundation

University of Montana

University of Missouri

MDC

U.S. Fish and Wildlife Service Wildlife Restoration

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3