Intraspecific variation among Chinook Salmon populations indicates physiological adaptation to local environmental conditions

Author:

Zillig Kenneth W1ORCID,FitzGerald Alyssa M23,Lusardi Robert A14,Cocherell Dennis E1,Fangue Nann A1ORCID

Affiliation:

1. University of California Department of Wildlife, Fish and Conservation Biology, , Davis, CA 95616, USA

2. University of California Santa Cruz Institute of Marine Sciences, , Santa Cruz, CA 95064, USA

3. Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Fisheries Ecology Division, , Santa Cruz, CA 95060, USA

4. University of California Center for Watershed Sciences, , Davis, CA 95616, USA

Abstract

Abstract Understanding interpopulation variation is important to predicting species responses to climate change. Recent research has revealed interpopulation variation among several species of Pacific salmonids; however, the environmental drivers of population differences remain elusive. We tested for local adaptation and countergradient variation by assessing interpopulation variation among six populations of fall-run Chinook Salmon from the western United States. Juvenile fish were reared at three temperatures (11, 16 and 20°C), and five physiological metrics were measured (routine and maximum metabolic rate, aerobic scope, growth rate and critical thermal maximum). We then tested associations between these physiological metrics and 15 environmental characteristics (e.g. rearing temperature, latitude, migration distance, etc.). Statistical associations between the five physiological metrics and 15 environmental characteristics supported our hypotheses of local adaptation. Notably, latitude was a poor predictor of population physiology. Instead, our results demonstrate that populations from warmer habitats exhibit higher thermal tolerance (i.e. critical thermal maxima), faster growth when warm acclimated and greater aerobic capacity at high temperatures. Additionally, populations with longer migrations exhibit higher metabolic capacity. However, overall metabolic capacity declined with warm acclimation, indicating that future climate change may reduce metabolic capacity, negatively affecting long-migrating populations. Linking physiological traits to environmental characteristics enables flexible, population-specific management of disparate populations in response to local conditions.

Funder

University of California, Agricultural Experiment Station

US Fish and Wildlife Service and University of California

US Environmental Protection Agency

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3