The effect of climate change on the escape kinematics and performance of fishes: implications for future predator–prey interactions

Author:

Domenici Paolo1,Allan Bridie J M2,Lefrançois Christel3,McCormick Mark I4

Affiliation:

1. CNR-IAS, Oristano, 09170 Italy

2. Department of Marine Science, University of Otago, Dunedin 9054, New Zealand

3. UMR 7266 LIENSs, University of La Rochelle—CNRS, La Rochelle 17000, France

4. Department of Marine Biology and Aquaculture, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia

Abstract

Abstract Climate change can have a pronounced impact on the physiology and behaviour of fishes. Notably, many climate change stressors, such as global warming, hypoxia and ocean acidification (OA), have been shown to alter the kinematics of predator–prey interactions in fishes, with potential effects at ecological levels. Here, we review the main effects of each of these stressors on fish escape responses using an integrative approach that encompasses behavioural and kinematic variables. Elevated temperature was shown to affect many components of the escape response, including escape latencies, kinematics and maximum swimming performance, while the main effect of hypoxia was on escape responsiveness and directionality. OA had a negative effect on the escape response of juvenile fish by decreasing their directionality, responsiveness and locomotor performance, although some studies show no effect of acidification. The few studies that have explored the effects of multiple stressors show that temperature tends to have a stronger effect on escape performance than OA. Overall, the effects of climate change on escape responses may occur through decreased muscle performance and/or an interference with brain and sensory functions. In all of these cases, since the escape response is a behaviour directly related to survival, these effects are likely to be fundamental drivers of changes in marine communities. The overall future impact of these stressors is discussed by including their potential effects on predator attack behaviour, thereby allowing the development of potential future scenarios for predator–prey interactions.

Funder

ARC Centre of Excellence for Coral Reef Studies

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3