Aerobic metabolic scope mapping of an invasive fish species with global warming

Author:

Quattrocchi Giovanni1,Christensen Emil23,Sinerchia Matteo1,Marras Stefano1,Cucco Andrea1,Domenici Paolo14,Behrens Jane W2

Affiliation:

1. Institute for the study of the Anthropic Impact and Sustainability in the marine environment National Research Council, , Loc. Sa Mardini, 09170, Oristano, Italy

2. Technical University of Denmark National Institute of Aquatic Resources, , Kgs. Lyngby, Denmark

3. University of Glasgow Institute of Biodiversity, Animal Health and Comparative Medicine, , Glasgow, United Kingdom

4. Istituto di Biofisica National Research Council, , Pisa, Italy

Abstract

Abstract Climate change will exacerbate the negative effects associated with the introduction of non-indigenous species in marine ecosystems. Predicting the spread of invasive species in relation to environmental warming is therefore a fundamental task in ecology and conservation. The Baltic Sea is currently threatened by several local stressors and the highest increase in sea surface temperature of the world’s large marine ecosystems. These new thermal conditions can further favour the spreading of the invasive round goby (Neogobius melanostomus), a fish of Ponto-Caspian origin, currently well established in the southern and central parts of the Baltic Sea. This study aims to assess the thermal habitat suitability of the round goby in the Baltic Sea considering the past and future conditions. The study combines sightings records with known physiological models of aerobic performance and sea surface temperatures. Physiological models read these temperatures, at sighting times and locations, to determine their effects on the aerobic metabolic scope (AMS) of the fish, a measure of its energetic potential in relation to environmental conditions. The geographical mapping of the AMS was used to describe the changes in habitat suitability during the past 3 decades and for climatic predictions (until 2100) showing that the favourable thermal habitat in the Baltic Sea has increased during the past 32 years and will continue to do so in all the applied climate model predictions. Particularly, the predicted new thermal conditions do not cause any reduction in the AMS of round goby populations, while the wintertime cold ranges are likely expected to preserve substantial areas from invasion. The results of this research can guide future monitoring programs increasing the chance to detect this invader in novel areas.

Funder

PANDORA. Paradigm for Novel Dynamic Oceanic Resource Assessments. Research and Innovation Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3