Epidemiology of Antimicrobial Resistance Among Blood and Respiratory Specimens in the United States Using Genotypic Analysis From a Cloud-Based Population Surveillance Network

Author:

Timbrook Tristan T12ORCID,Olin Katherine E1,Spaulding Usha1,Galvin Ben W1,Cox Charles B1

Affiliation:

1. bioMérieux , Salt Lake City, Utah , USA

2. University of Utah College of Pharmacy , Salt Lake City, Utah , USA

Abstract

Abstract Background Antimicrobial resistance (AMR) surveillance is critical in informing strategies for infection control in slowing the spread of resistant organisms and for antimicrobial stewardship in the care of patients. However, significant challenges exist in timely and comprehensive AMR surveillance. Methods Using BioFire Pneumonia and Blood Culture 2 Panels data from BioFire Syndromic Trends (Trend), a cloud-based population surveillance network, we described the detection rate of AMR among a US cohort. Data were included from 2019 to 2021 for Gram-positive and -negative organisms and their related AMR genomic-resistant determinants as well as for detections of Candida auris. Regional and between panel AMR detection rate differences were compared. In addition, AMR codetections and detection rate per organism were evaluated for Gram-negative organisms. Results A total of 26 912 tests were performed, primarily in the Midwest. Overall, AMR detection rate was highest in the South and more common for respiratory specimens than blood. methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus detection rates were 34.9% and 15.9%, respectively, whereas AMR for Gram-negative organisms was lower with 7.0% CTX-M and 2.9% carbapenemases. In addition, 10 mcr-1 and 4 C auris detections were observed. For Gram-negative organisms, Klebsiella pneumoniae and Escherichia coli were most likely to be detected with an AMR gene, and of Gram-negative organisms, K pneumoniae was most often associated with 2 or more AMR genes. Conclusions Our study provides important in-depth evaluation of the epidemiology of AMR among respiratory and blood specimens for Gram-positive and -negative organism in the United States. The Trend surveillance network allows for near real-time surveillance of AMR.

Funder

bioMérieux

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3