Performance of Metagenomic Next-Generation Sequencing for the Diagnosis of Viral Meningoencephalitis in a Resource-Limited Setting

Author:

Hong Nguyen Thi Thu1,Anh Nguyen To1,Mai Nguyen Thi Hoang1,Nghia Ho Dang Trung12,Nhu Le Nguyen Truc1,Thanh Tran Tan1,Phu Nguyen Hoan13,Deng Xutao45,van Doorn H Rogier16,Chau Nguyen Van Vinh7,Delwart Eric45,Thwaites Guy16,Tan Le Van1

Affiliation:

1. Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam

2. Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam

3. Department of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam

4. Vitalant Research Institute, San Francisco, California, USA

5. Department of Laboratory Medicine, University of California, San Francisco, California, USA

6. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK

7. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam

Abstract

Abstract Background Meningoencephalitis is a devastating disease worldwide. Current diagnosis fails to establish the cause in ≥50% of patients. Metagenomic next-generation sequencing (mNGS) has emerged as pan-pathogen assays for infectious diseases diagnosis, but few studies have been conducted in resource-limited settings. Methods We assessed the performance of mNGS in the cerebrospinal fluid (CSF) of 66 consecutively treated adults with meningoencephalitis in a tertiary referral hospital for infectious diseases in Vietnam, a resource-limited setting. All mNGS results were confirmed by viral-specific polymerase chain reaction (PCR). As a complementary analysis, 6 viral PCR-positive samples were analyzed using MinION-based metagenomics. Results Routine diagnosis could identify a virus in 15 (22.7%) patients, including herpes simplex virus (HSV; n = 7) and varicella zoster virus (VZV; n = 1) by PCR, and mumps virus (n = 4), dengue virus (DENV; n = 2), and Japanese encephalitis virus (JEV; n = 1) by serological diagnosis. mNGS detected HSV, VZV, and mumps virus in 5/7, 1/1, and 1/4 of the CSF positive by routine assays, respectively, but it detected DENV and JEV in none of the positive CSF. Additionally, mNGS detected enteroviruses in 7 patients of unknown cause. Metagenomic MinION-Nanopore sequencing could detect a virus in 5/6 PCR-positive CSF samples, including HSV in 1 CSF sample that was negative by mNGS, suggesting that the sensitivity of MinION is comparable with that of mNGS/PCR. Conclusions In a single assay, metagenomics could accurately detect a wide spectrum of neurotropic viruses in the CSF of meningoencephalitis patients. Further studies are needed to determine the value that real-time sequencing may contribute to the diagnosis and management of meningoencephalitis patients, especially in resource-limited settings where pathogen-specific assays are limited in number.

Funder

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3