Diagnostic Accuracy of Health Care Administrative Diagnosis Codes to Identify Nontuberculous Mycobacteria Disease: A Systematic Review

Author:

Mejia-Chew Carlos1,Yaeger Lauren2,Montes Kevin3,Bailey Thomas C1,Olsen Margaret A1

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA

2. Bernard Becker Medical Library, Washington University in St. Louis, St. Louis, Missouri, USA

3. Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA

Abstract

Abstract Background Health care administrative database research frequently uses standard medical codes to identify diagnoses or procedures. The aim of this review was to establish the diagnostic accuracy of codes used in administrative data research to identify nontuberculous mycobacterial (NTM) disease, including lung disease (NTMLD). Methods We searched Ovid Medline, Embase, Scopus, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov from inception to April 2019. We included studies assessing the diagnostic accuracy of International Classification of Diseases, 9th edition, Clinical Modification (ICD-9-CM) diagnosis codes to identify NTM disease and NTMLD. Studies were independently assessed by 2 researchers, and the Quality Assessment of Diagnostic Accuracy Studies 2 tool was used to assess bias and quality. Results We identified 5549 unique citations. Of the 96 full-text articles reviewed, 7 eligible studies of moderate quality (3730 participants) were included in our review. The diagnostic accuracy of ICD-9-CM diagnosis codes to identify NTM disease varied widely across studies, with positive predictive values ranging from 38.2% to 100% and sensitivity ranging from 21% to 93%. For NTMLD, 4 studies reported diagnostic accuracy, with positive predictive values ranging from 57% to 64.6% and sensitivity ranging from 21% to 26.9%. Conclusions Diagnostic accuracy measures of codes used in health care administrative data to identify patients with NTM varied across studies. Overall the positive predictive value of ICD-9-CM diagnosis codes alone is good, but the sensitivity is low; this method is likely to underestimate case numbers, reflecting the current limitations of coding systems to capture NTM diagnoses.

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3