693. Shaking Things Up: Direct-to-PCR Viral Detection off Swabs Using Shaker-Mill Homogenization

Author:

Morehouse Zachary P1,Proctor Caleb2,Ryan Gabriella2,Nash Rodney J2

Affiliation:

1. Michigan State University College of Osteopathic Medicine, East Lansing, Michigan

2. Omni International Inc, Kennesaw, Georgia

Abstract

Abstract Background As the number of viral diseases are on the rise, it is critical to continue to innovate and advance diagnostic, treatment, and surveillance methods surrounding viral infections. Currently, one of the most reliable methods for viral infection detection are polymerase chain reaction (PCR) based assays. These assays often involve procedures of swabbing a patient, processing the sample to lyse the virus, extract, and purify it’s nucleotides, and then run the purified genetic material via PCR for detection of a gene product needed to confirm the patient’s suspected diagnosis. This process requires time to complete and is dependent on the availability of the reagents and plastics required to complete the lysis, extraction, purification, and amplification procedures. Herein, we have developed a method to detect virus off a swab using solely shaker-mill based mechanical lysis and the transfer of the viral lysate directly to a PCR based assay, bypassing the reagent heavy and time consuming extraction and purification steps. Methods Using Human Coronavirus 229E (HCoV-229E) as a model system, we spiked swabs with clinically relevant levels of the virus for proof-of-concept testing. Swabs were spiked in serial dilutions from 1.2e7 copies/mL to 1.2e1 copies/mL. The swabs were then placed in 2mL tubes with viral transport media (VTM) to mimic the specimen collection procedures in the clinic prior to processing via shaker-mill homogenization. After homogenization, 1 uL of viral lysate was run in RT-qPCR for amplification of the nucleocapsid (N) gene, qualifying viral detection from the sample. Results HCoV-229E spiked swabs were run through the two-step process of homogenization direct to RT-qPCR for viral detection. After running 54 swabs, we confidently determined our limit of detection to be 1.2e3 viral copies/mL with 96.30% sensitivity in vitro. Conclusion We have successfully proven that shaker-mill homogenization provides sufficient viral lysis off swabs, where the resulting lysate can be used directly in PCR based assays for the detection of virus. This finding allows for decreased run time in traditional PCR based diagnostics and reduces the reagents and plastics required for each sample, ultimately reducing the cost and time of each viral test when compared to traditional PCR based methods. Disclosures Zachary P. Morehouse, MS, OMS-III, Omni International Inc (Consultant) Caleb Proctor, BS, Omni International Inc (Employee) Gabriella Ryan, BS, Omni International Inc (Employee) Rodney J. Nash, PhD, Omni International Inc (Employee)

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Utility of Mechanical Homogenization in COVID-19 Diagnostic Workflows;Biotechnology to Combat COVID-19 [Working Title];2021-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3