Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears

Author:

Wang Geng1,Luo Guoju1,Lian Heqing2,Chen Lei2,Wu Wei1,Liu Hui3

Affiliation:

1. Department of Clinical Laboratory, Peking Union Medical College Hospital , Beijing , China

2. Beijing Xiaoying Technology Co, Ltd , Beijing , China

3. Central Laboratory, Yunnan Institute of Parasite Diseases , Puer , China

Abstract

Abstract Background Scarcity of annotated image data sets of thin blood smears makes expert-level differentiation among Plasmodium species challenging. Here, we aimed to establish a deep learning algorithm for identifying and classifying malaria parasites in thin blood smears and evaluate its performance and clinical prospect. Methods You Only Look Once v7 was used as the backbone network for training the artificial intelligence algorithm model. The training, validation, and test sets for each malaria parasite category were randomly selected. A comprehensive analysis was performed on 12 708 thin blood smear images of various infective stages of 12 546 malaria parasites, including P falciparum, P vivax, P malariae, P ovale, P knowlesi, and P cynomolgi. Peripheral blood samples were obtained from 380 patients diagnosed with malaria. Additionally, blood samples from monkeys diagnosed with malaria were used to analyze P cynomolgi. The accuracy for detecting Plasmodium-infected blood cells was assessed through various evaluation metrics. Results The total time to identify 1116 malaria parasites was 13 seconds, with an average analysis time of 0.01 seconds for each parasite in the test set. The average precision was 0.902, with a recall and precision of infected erythrocytes of 96.0% and 94.9%, respectively. Sensitivity and specificity exceeded 96.8% and 99.3%, with an area under the receiver operating characteristic curve >0.999. The highest sensitivity (97.8%) and specificity (99.8%) were observed for trophozoites and merozoites. Conclusions The algorithm can help facilitate the clinical and morphologic examination of malaria parasites.

Funder

National High-Level Hospital Clinical Research

Beijing Municipal Science and Technology Commission

Administrative Commission of Zhongguancun Science Park

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Oncology

Reference32 articles.

1. Malaria diagnostic techniques;Centers for Disease Control and Prevention

2. Malaria;Walter;JAMA,2022

3. Clinical aspects of uncomplicated and severe malaria;Bartoloni;Mediterr J Hematol Infect Dis,2012

4. WHO recommends groundbreaking malaria vaccine for children at risk;Word Health Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3