Prompt matters: evaluation of large language model chatbot responses related to Peyronie’s disease

Author:

Warren Christopher J1ORCID,Edmonds Victoria S1,Payne Nicolette G1,Voletti Sandeep2,Wu Sarah Y2,Colquitt JennaKay2,Sadeghi-Nejad Hossein3,Punjani Nahid1

Affiliation:

1. Department of Urology, Mayo Clinic Arizona , Phoenix, AZ 85054, United States

2. Mayo Clinic Alix School of Medicine , Scottsdale, AZ 85259, United States

3. Department of Urology, New York University , New York, NY 10016, United States

Abstract

Abstract Introduction Despite direct access to clinicians through the electronic health record, patients are increasingly turning to the internet for information related to their health, especially with sensitive urologic conditions such as Peyronie’s disease (PD). Large language model (LLM) chatbots are a form of artificial intelligence that rely on user prompts to mimic conversation, and they have shown remarkable capabilities. The conversational nature of these chatbots has the potential to answer patient questions related to PD; however, the accuracy, comprehensiveness, and readability of these LLMs related to PD remain unknown. Aims To assess the quality and readability of information generated from 4 LLMs with searches related to PD; to see if users could improve responses; and to assess the accuracy, completeness, and readability of responses to artificial preoperative patient questions sent through the electronic health record prior to undergoing PD surgery. Methods The National Institutes of Health’s frequently asked questions related to PD were entered into 4 LLMs, unprompted and prompted. The responses were evaluated for overall quality by the previously validated DISCERN questionnaire. Accuracy and completeness of LLM responses to 11 presurgical patient messages were evaluated with previously accepted Likert scales. All evaluations were performed by 3 independent reviewers in October 2023, and all reviews were repeated in April 2024. Descriptive statistics and analysis were performed. Results Without prompting, the quality of information was moderate across all LLMs but improved to high quality with prompting. LLMs were accurate and complete, with an average score of 5.5 of 6.0 (SD, 0.8) and 2.8 of 3.0 (SD, 0.4), respectively. The average Flesch-Kincaid reading level was grade 12.9 (SD, 2.1). Chatbots were unable to communicate at a grade 8 reading level when prompted, and their citations were appropriate only 42.5% of the time. Conclusion LLMs may become a valuable tool for patient education for PD, but they currently rely on clinical context and appropriate prompting by humans to be useful. Unfortunately, their prerequisite reading level remains higher than that of the average patient, and their citations cannot be trusted. However, given their increasing uptake and accessibility, patients and physicians should be educated on how to interact with these LLMs to elicit the most appropriate responses. In the future, LLMs may reduce burnout by helping physicians respond to patient messages.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3