Bradykinin B1 receptor antagonist protects against cold stress–induced erectile dysfunction in rats

Author:

Ruze Abudureyimujiang1,Wang Binghua1,Jin Jin1,Hou Pengcheng1,Tuerxun Diliyaer2,Amuti Siyiti1

Affiliation:

1. School of Basic Medical Science, Xinjiang Medical University Department of Human Anatomy, , Shuimogou District, Urumqi, Xinjiang Uyghur Autonomous Region 830017 , China

2. Gansu University of Chinese Medicine Clinical College of Chinese Medicine, , Lanzhou City, Gansu Province 730000 , China

Abstract

AbstractBackgroundErectile dysfunction (ED) demonstrates seasonal variation with higher rates in winter, and we hypothesize that endothelial damage in erectile tissue caused by bradykinin receptor B1 (B1R) might be detrimental to this change.AimTo find out direct correlations between cold stress and ED, through which to further investigate the functional roles of B1R in erectile tissue and to elucidate the therapeutic roles of the B1R antagonist in a cold stress–induced ED rat model.MethodsCold stress rat models are established through long-term intermittent exposure to low temperature. After their erectile function was assessed, ED rats were treated with the B1R antagonist through intraperitoneal injection. Penile tissues were obtained at the end of the experiment after measurement of intracavernosal pressure/mean arterial pressure (ICP/MAP); the location and distribution of cytokine expression were determined by immunohistochemistry; cytokine levels and NOS and CD31 expression were detected by Western blotting; and collagen fibers and smooth muscles were observed through Masson staining.OutcomesCold stress impairs erectile function, and the B1R antagonist protects against it.ResultsWe observed decreased erection frequency, prolonged erection latency time, decreased ICP/MAP, overexpression of B1R, increased expression of cytokines on cavernous sinus endothelium, and increased levels of collagen fibers/smooth muscles on erectile tissue in response to cold stress. Also, NOS and CD31 expression was downregulated. B1R antagonist treatment shows enhanced erectile function through increased erection frequency, shortened erection latency time, and increased ICP/MAP. Also, it reduces collagen fibers/smooth muscles, TNF-α, TGF-β1, and IL-6 and upregulates the expression of nNOS and CD31.Clinical TranslationOur findings cast new light on the correlations between cold stress and erectile function and potential new applications of existing B1R antagonist drugs in the field of ED.Strengths and LimitationsOur data support that cold stress impairs erectile function. B1R-mediated, cytokine-induced corpus cavernosum fibrosis and endothelial damage might be the main reason behind it, and B1R inhibition protects against fibrosis and endothelial damage. Other ways of B1R antagonist blocking methods in different types of ED still need to be investigated.ConclusionLong-term intermittent cold stress impairs erectile function, and B1R-mediated, cytokine-induced corpus cavernosum fibrosis and endothelial damage might be the main reason behind it. B1R inhibition also protects against fibrosis and endothelial damage. Our data support the hypothesis that cold stress impairs erectile function and that B1R blockade ameliorates the symptoms of ED, possibly by reversing fibrosis and endothelial damage in erectile tissue.

Funder

State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia

Publisher

Oxford University Press (OUP)

Subject

Behavioral Neuroscience,Urology,Dermatology,Reproductive Medicine,Endocrinology,Endocrinology, Diabetes and Metabolism,Psychiatry and Mental health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3