In vitro high glucose increases apoptosis, decreases nerve outgrowth, and promotes survival of sympathetic pelvic neurons

Author:

Pallas Wrenn D1,Pak Elena S1,Hannan Johanna L1

Affiliation:

1. Department of Physiology, Brody School of Medicine at East Carolina University , Greenville, NC , United States

Abstract

AbstractBackgroundDiabetes mellitus (DM) is a common cause of erectile dysfunction (ED), yet the molecular basis of DM neurogenic ED remains unknown.AimIn this study we examined the impact of high glucose on survival and growth of primary cultured pelvic neurons in a rat model and assessed whether coculturing with healthy Schwann cells (SCs) can rescue pelvic neuron growth in patients with DM.MethodsMajor pelvic ganglia (MPGs) from adult male Sprague Dawley rats (n = 8) were dissociated and plated on coverslips. Neurons were exposed to high glucose (45 mM) for 24 or 48 hours and compared to time-matched controls (25 mM). Neurons were stained for neuron-specific beta-tubulin, neuronal nitric oxide synthase, vesicular acetylcholine transferase, tyrosine hydroxylase, and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling) assay. Schwann cells were dissociated from MPGs of healthy male Sprague Dawley rats (n = 4) and grown to confluence. Additional Sprague Dawley rats were made diabetic with streptozotocin (50 mg/kg, n = 4), and 5 weeks later MPGs were collected from these rats, dissociated, and cocultured on healthy SCs. Neurons and SCs were stained with beta-tubulin and S100.OutcomesLength, branching, and survival of nitrergic, parasympathetic, and sympathetic neurons was assessed in neurons exposed to normal or high glucose concentrations, and neuron length was measured in neuron-SC coculture.ResultsThe total number of neurons and the length and number of branches were significantly decreased after 24 and 48 hours of high glucose (P < .05). The percentage of nitrergic neurons decreased 10% after 24 hours and 50% after 48 hours of high glucose (P < .05). After 24 hours of high glucose, cholinergic-positive neurons were unchanged; however, these neurons decreased 30% after 48 hours (P < .05). The proportion of sympathetic neurons increased 25% after 48 hours of high glucose (P < .05). At both timepoints, there was a 2-fold increase in the total apoptotic neurons with high glucose (P < .05). Neurite outgrowth recovered to control lengths after coculture of diabetic neurons with healthy SCs (P < .05).Clinical TranslationGlucose can be used as a tool to investigate the direct effects of DM on neuritogenesis. Our data suggest that an effective treatment for DM ED protects and repairs the penile neuronal supply.Strengths and LimitationsExposing MPG neurons to high glucose offers a quick and, inexpensive proxy for DM-related conditions. A limitation of our study is that our model reflects type 1 DM, whereas clinically, most diabetic ED patients have type 2 DM.ConclusionCulturing pelvic neurons in high glucose can be used as a tool to elucidate how to protect proerectile neurons from cell death and may lead to new therapeutic strategies for diabetic men suffering from ED.

Funder

Brody School of Medicine

Publisher

Oxford University Press (OUP)

Subject

Behavioral Neuroscience,Urology,Dermatology,Reproductive Medicine,Endocrinology,Endocrinology, Diabetes and Metabolism,Psychiatry and Mental health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3