Multifactorial feature extraction and site prognosis model for protein methylation data

Author:

Khandelwal Monika1,Kumar Rout Ranjeet1,Umer Saiyed2,Mallik Saurav3ORCID,Li Aimin4ORCID

Affiliation:

1. Computer Science & Engineering, National Institute of Technology Srinagar , Hazratbal, Srinagar, 190006, Jammu and Kashmir , India

2. Computer Science & Engineering, Aliah University , Kolkata, 700016, West Bengal , India

3. Department of Environmental Health, Harvard T H Chan School of Public Health , Huntington Ave, Boston, 02115, MA , USA

4. School of Computer Science and Engineering, Xi‘an University of Technology , Jinhua S Rd, 710048, Shaanxi , China

Abstract

Abstract Integrated studies (multi-omics studies) comprising genetic, proteomic and epigenetic data analyses have become an emerging topic in biomedical research. Protein methylation is a posttranslational modification that plays an essential role in various cellular activities. The prediction of methylation sites (arginine and lysine) is vital to understand the molecular processes of protein methylation. However, current experimental techniques used for methylation site predictions are tedious and expensive. Hence, computational techniques for predicting methylation sites in proteins are necessary. For predicting methylation sites, various computational methods have been proposed in recent years. Most existing methods require structural and evolutionary information for retrieving features, acquiring this information is not always convenient. Thus, we proposed a novel method, called multi-factorial feature extraction and site prognosis model (MufeSPM), for the prediction of protein methylation sites based on information theory features (Renyi, Shannon, Havrda–Charvat and Arimoto entropy), amino acid composition and physicochemical properties acquired from protein methylation data. A random forest algorithm was used to predict methylation sites in protein sequences. This paper also studied the impact of different features and classifiers on arginine and lysine methylation data sets. For the R methylation data set, MufeSPM yielded 82.45%($\pm $ 3.47) accuracy, and for the K methylation data set, it provided an average accuracy of 71.94%($\pm $ 2.12). Additionally, the area under the receiver operating characteristic curve for different classifiers in predicting methylation site was provided. The experimental results signify that MufeSPM performs better than the state-of-the-art predictors.

Funder

Natural Science Basic Research Program of Shaanxi

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3