Integrating multi-omics data to identify dysregulated modules in endometrial cancer

Author:

Chen Zhongli,Liang Biting,Wu Yingfu,Liu Quanzhong,Zhang Hongming,Wu Hao

Abstract

AbstractCancer is generally caused by genetic mutations, and differentially expressed genes are closely associated with genetic mutations. Therefore, mutated genes and differentially expressed genes can be used to study the dysregulated modules in cancer. However, it has become a big challenge in cancer research how to accurately and effectively detect dysregulated modules that promote cancer in massive data. In this study, we propose a network-based method for identifying dysregulated modules (Netkmeans). Firstly, the study constructs an undirected-weighted gene network based on the characteristics of high mutual exclusivity, high coverage and complex network topology among genes widely existed in the genome. Secondly, the study constructs a comprehensive evaluation function to select the number of clusters scientifically and effectively. Finally, the K-means clustering method is applied to detect the dysregulated modules. Compared with the results detected by IBA and CCEN methods, the results of Netkmeans proposed in this study have higher statistical significance and biological relevance. Besides, compared with the dysregulated modules detected by MCODE, CFinder and ClusterONE, the results of Netkmeans have higher accuracy, precision and F-measure. The experimental results show that the multiple dysregulated modules detected by Netkmeans are essential in the generation, development and progression of cancer, and thus they play a vital role in the precise diagnosis, treatment and development of new medications for cancer patients.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

Reference51 articles.

1. International network of cancer genome projects;Rialsebbag;Nature,2010

2. International cancer genome consortium data portal–a one-stop shop for cancer genomics data;Zhang;Database,2011

3. The cancer genome atlas pan-cancer analysis project;Chang;Nat Genet,2013

4. Integrated genomic characterization of endometrial carcinoma;Douglas;Nat Int Weekly J Sci,2013

5. Systematic tracking of dysregulated modules identifies novel genes in cancer;Sriganesh;Bioinformatics,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3