Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens

Author:

Ilyas Mohd1,Purkait Dyuti1,Atmakuri Krishnamohan1ORCID

Affiliation:

1. Translational Health Science and Technology Institute, NCR Biotech Science Cluster Bacterial Pathogenesis Lab, Infection and Immunity Group, , Faridabad, Haryana 121001, India

Abstract

Abstract To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of ‘foreign’ deoxyribonucleic acid, which are commonly referred to as ‘genomic islands’ (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanomaterial-based methods for sepsis management;Enzyme and Microbial Technology;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3