Deep learning tools are top performers in long non-coding RNA prediction

Author:

Ammunét Tea1ORCID,Wang Ning1,Khan Sofia1ORCID,Elo Laura L12

Affiliation:

1. Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland

2. Institute of Biomedicine, University of Turku, Turku, Finland

Abstract

Abstract The increasing amount of transcriptomic data has brought to light vast numbers of potential novel RNA transcripts. Accurately distinguishing novel long non-coding RNAs (lncRNAs) from protein-coding messenger RNAs (mRNAs) has challenged bioinformatic tool developers. Most recently, tools implementing deep learning architectures have been developed for this task, with the potential of discovering sequence features and their interactions still not surfaced in current knowledge. We compared the performance of deep learning tools with other predictive tools that are currently used in lncRNA coding potential prediction. A total of 15 tools representing the variety of available methods were investigated. In addition to known annotated transcripts, we also evaluated the use of the tools in actual studies with real-life data. The robustness and scalability of the tools’ performance was tested with varying sized test sets and test sets with different proportions of lncRNAs and mRNAs. In addition, the ease-of-use for each tested tool was scored. Deep learning tools were top performers in most metrics and labelled transcripts similarly with each other in the real-life dataset. However, the proportion of lncRNAs and mRNAs in the test sets affected the performance of all tools. Computational resources were utilized differently between the top-ranking tools, thus the nature of the study may affect the decision of choosing one well-performing tool over another. Nonetheless, the results suggest favouring the novel deep learning tools over other tools currently in broad use.

Funder

Biocenter Finland

Academy of Finland

Horizon 2020

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3