High-grade prostate cancer demonstrates preferential growth in the cranio-caudal axis and provides discrimination of disease grade in an MRI parametric model

Author:

Mukherjee Subhabrata1,Papadopoulos Dimitrios1,Chari Natasha1,Ellis David1,Charitopoulos Konstantinos1,Donkov Ivo1,Bishara Samuel1ORCID

Affiliation:

1. Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust , Twickenham Road , London, TW7 6AF, United Kingdom

Abstract

Abstract Objectives To determine if multiparametric MRI prostate cancer (PC) lesion dimensions in different axes could distinguish between PC, grade group (GG) >2, and GG >3 on targeted transperineal biopsy and create and validate a predictive model on a separate cohort. Methods The maximum transverse, anterio-posterior, and cranio-caudal lesion dimensions were assessed against the presence of any cancer, GG >2, and GG >3 on biopsy by binary logistic regression. The optimum multivariate models were evaluated on a separate cohort. Results One hundred and ninety-three lesions from 148 patients were evaluated. Increased lesion volume, Prostate Specific Antigen (PSA), Prostate Imaging Reporting and Data System score, and decreased Apparent Diffusion Coefficient (ADC) were associated with increased GG (P < .001). The ratio of cranio-caudal to anterior-posterior lesion dimension increased from 1.20 (95% CI, 1.14-1.25) for GG ≤ 3 to 1.43 (95% CI, 1.28-1.57) for GG > 3 (P = .0022). The cranio-caudal dimension of the lesion was the strongest predictor of GG >3 (P = .000, area under the receiver operator characteristic curve [AUC] = 0.81). The best multivariate models had an AUC of 0.84 for cancer, 0.88 for GG > 2, and 0.89 for GG > 3. These models were evaluated on a separate cohort of 40 patients with 61 lesions. They demonstrated an AUC, sensitivity, and specificity of 0.82, 82.3%, and 55.5%, respectively, for the detection of cancer. For GG > 2, the models achieved an AUC of 0.84, sensitivity of 91.7%, and specificity of 69.4%. Additionally, for GG > 3, the models showed an AUC of 0.92, sensitivity of 88.9%, and specificity of 98.1%. Conclusions Cranio-caudal lesion dimension when used in conjunction with other parameters can create a model superior to the Prostate Imaging Reporting and Data Systems score in predicting cancer. Advances in knowledge Higher-grade PC has a propensity to grow in the cranio-caudal direction, and this could be factored into MRI-based predictive models of prostate biopsy grade.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3