Impact of technological advances in treatment planning, image guidance, and treatment delivery on target margin design for prostate cancer radiotherapy: an updated review

Author:

Winter Jeff D12ORCID,Reddy Varun1,Li Winnie12ORCID,Craig Tim12ORCID,Raman Srinivas12

Affiliation:

1. Radiation Medicine Program, Princess Margaret Cancer Centre , Toronto, ON M5G 2M9, Canada

2. Department of Radiation Oncology, University of Toronto , Toronto, ON M5T 1P5, Canada

Abstract

Abstract Recent innovations in image guidance, treatment delivery, and adaptive radiotherapy (RT) have created a new paradigm for planning target volume (PTV) margin design for patients with prostate cancer. We performed a review of the recent literature on PTV margin selection and design for intact prostate RT, excluding post-operative RT, brachytherapy, and proton therapy. Our review describes the increased focus on prostate and seminal vesicles as heterogenous deforming structures with further emergence of intra-prostatic GTV boost and concurrent pelvic lymph node treatment. To capture recent innovations, we highlight the evolution in cone beam CT guidance, and increasing use of MRI for improved target delineation and image registration and supporting online adaptive RT. Moreover, we summarize new and evolving image-guidance treatment platforms as well as recent reports of novel immobilization strategies and motion tracking. Our report also captures recent implementations of artificial intelligence to support image guidance and adaptive RT. To characterize the clinical impact of PTV margin changes via model-based risk estimates and clinical trials, we highlight recent high impact reports. Our report focusses on topics in the context of PTV margins but also showcase studies attempting to move beyond the PTV margin recipes with robust optimization and probabilistic planning approaches. Although guidelines exist for target margins conventional using CT-based image guidance, further validation is required to understand the optimal margins for online adaptation either alone or combined with real-time motion compensation to minimize systematic and random uncertainties in the treatment of patients with prostate cancer.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3