A spiculated mass target model for clinical image quality control in digital mammography

Author:

Salomon Elisabeth1ORCID,Vanko Bence1,Homolka Peter1,Cockmartin Lesley2,Figl Michael13,Clauser Paola4,Unger Ewald1,Bosmans Hilde2,Marshall Nicolas2,Hummel Johann13

Affiliation:

1. Center for Medical Physics and Biomedical Engineering, Medical University of Vienna , Vienna A-1090, Austria

2. Department of Radiology, UZ Gasthuisberg , Leuven B-30008, Belgium

3. Christian Doppler Laboratory for Mathematical Modeling and Simulation of Next-Generation Medical Ultrasound Devices , Vienna A-1090, Austria

4. Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna and General Hospital Vienna , Vienna A-1090, Austria

Abstract

Abstract Objectives Quality assurance of breast imaging has a long history of using test objects to optimize and follow up imaging devices. In particular, the evaluation of new techniques benefits from suitable test objects. The applicability of a phantom consisting of spiculated masses to assess image quality and its dependence on dose in flat field digital mammography (FFDM) and digital breast tomosynthesis systems (DBT) is investigated. Methods Two spiculated masses in five different sizes each were created from a database of clinical tumour models. The masses were produced using 3D printing and embedded into a cuboid phantom. Image quality is determined by the number of spicules identified by human observers. Results The results suggest that the effect of dose on spicule detection is limited especially in cases with smaller objects and probably hidden by the inter-reader variability. Here, an average relative inter-reader variation of the counted number of 31% was found (maximum 83%). The mean relative intra-reader variability was found to be 17%. In DBT, sufficiently good results were obtained only for the largest masses. Conclusions It is possible to integrate spiculated masses into a cuboid phantom. It is easy to print and should allow a direct and prompt evaluation of the quality status of the device by counting visible spicules. Human readout presented the major uncertainty in this study, indicating that automated readout may improve the reproducibility and consistency of the results considerably. Advances in knowledge A cuboid phantom including clinical objects as spiculated lesion models for visual assessing the image quality in FFDM and DBT was developed and is introduced in this work. The evaluation of image quality works best with the two larger masses with 21 spicules.

Funder

Austrian Research Promoting Agency

Austrian Federal Ministry for Digital and Economic Affairs

National Foundation for Research, Technology and Development

Christian Doppler Research Association

Publisher

Oxford University Press (OUP)

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3