Impaired SERCA2a phosphorylation causes diabetic cardiomyopathy through impinging on cardiac contractility and precursor protein processing

Author:

Quan Chao12,Zhu Sangsang12,Wang Ruizhen12,Chen Jiamou12,Chen Qiaoli12,Li Min12,Su Shu12,Du Qian12,Liu Minjun12,Wang Hong-Yu123,Chen Shuai123ORCID

Affiliation:

1. MOE Key Laboratory of Model Animal for Disease Study, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University , Nanjing, Jiangsu 210061 , China

2. State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, Model Animal Research Center, School of Medicine, Nanjing University , Nanjing, Jiangsu 210061 , China

3. Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University , Nanjing 210061 , China

Abstract

Abstract Diabetic cardiomyopathy (DCM) is currently a progressive and nonstoppable complication in type 2 diabetic patients. Metabolic insults and insulin resistance are involved in its pathogenesis; however, the underlying mechanisms are still not clearly understood. Here we show that calcium dysregulation can be both a cause and a consequence of cardiac insulin resistance that leads to DCM. A western diet induces the development of DCM through at least three phases in mice, among which an early phase depends on impaired Thr484-phosphorylation of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) elicited by insulin resistance. Mutation of SERCA2a-Thr484 to a nonphosphorylatable alanine delays calcium re-uptake into the sarcoplasmic reticulum in the cardiomyocytes and decreases cardiac function at the baseline. Importantly, this mutation blunts the early phase of DCM, but has no effect on disease progression in the following phases. Interestingly, impairment of sarcoplasmic reticulum calcium re-uptake caused by the SERCA2a-Thr484 mutation inhibited processing of insulin receptor precursor through FURIN convertase, resulting in cardiac insulin resistance. Collectively, these data reveal a bidirectional relationship between insulin resistance and impairment of calcium homeostasis, which may underlie the early pathogenesis of DCM. Our findings have therapeutic implications for early intervention of DCM.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

Science and Technology Foundation of Jiangsu Province of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3