Affiliation:
1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
2. Department of Internal Medicine/Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan
3. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
Abstract
Abstract
Background
Clostridium (Clostridioides) difficile infection (CDI) is a health care–associated infection that can lead to serious complications. Potential complications include intensive care unit (ICU) admission, development of toxic megacolon, need for colectomy, and death. However, identifying the patients most likely to develop complicated CDI is challenging. To this end, we explored the utility of a machine learning (ML) approach for patient risk stratification for complications using electronic health record (EHR) data.
Methods
We considered adult patients diagnosed with CDI between October 2010 and January 2013 at the University of Michigan hospitals. Cases were labeled complicated if the infection resulted in ICU admission, colectomy, or 30-day mortality. Leveraging EHR data, we trained a model to predict subsequent complications on each of the 3 days after diagnosis. We compared our EHR-based model to one based on a small set of manually curated features. We evaluated model performance using a held-out data set in terms of the area under the receiver operating characteristic curve (AUROC).
Results
Of 1118 cases of CDI, 8% became complicated. On the day of diagnosis, the model achieved an AUROC of 0.69 (95% confidence interval [CI], 0.55–0.83). Using data extracted 2 days after CDI diagnosis, performance increased (AUROC, 0.90; 95% CI, 0.83–0.95), outperforming a model based on a curated set of features (AUROC, 0.84; 95% CI, 0.75–0.91).
Conclusions
Using EHR data, we can accurately stratify CDI cases according to their risk of developing complications. Such an approach could be used to guide future clinical studies investigating interventions that could prevent or mitigate complicated CDI.
Funder
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Infectious Diseases,Oncology
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献