Effects of dietary multienzymes on the growth performance, digestive enzyme activity, nutrient digestibility, excreta noxious gas emission, and nutrient transporter gene expression in white feather broilers

Author:

Yi Wuzhou123,Huang Qixin1,Liu Yanjie4,Fu Shijun5,Shan Tizhong123ORCID

Affiliation:

1. College of Animal Sciences, Zhejiang University , Hangzhou , China

2. The Key Laboratory of Molecular Animal Nutrition, Ministry of Education , Hangzhou , China

3. Zhejiang Provincial Laboratory of Feed and Animal Nutrition , Hangzhou , China

4. Jinan Bestzyme Bio-Engineering Co., Ltd , Jinan , China

5. Shandong Binzhou Animal Science & Veterinary Medicine Academy , Binzhou , China

Abstract

Abstract Adding multienzymes to poultry feed rations is recognized as a nutritional strategy aimed at improving poultry performance and health status. Nonetheless, some literatures present an ongoing debate about the extent of multienzymes beneficial impact on poultry growth performance. This study aimed to explore the impacts of dietary multienzyme supplementation on broilers, focusing specifically on growth performance, carcass characteristics, apparent nutrient digestibility, excreta noxious gas emission, and intestinal nutrient transporter gene expression. A total of 3,200 broilers were randomly assigned to five groups (eight replicates per treatment group) and treated with the following: normal control (CON), CON + 100 g/t multienzyme (ME100), CON + 150 g/t multienzyme (ME150), CON + 200 g/t multienzyme (ME200), and CON + 250 g/t multienzyme (ME250). Supplementing with multienzymes significantly influenced the feed conversion rate (linear, P = 0.007; quadratic, P = 0.024) and the European broiler index (linear, P = 0.004; quadratic, P = 0.016) in broilers. Dietary multienzymes significantly influenced apparent metabolizable energy (quadratic, P = 0.015) and neutral detergent fiber (quadratic, P < 0.001). Moreover, multienzyme supplementation in the diet also decreased the emission of ammonia (linear, P = 0.001; quadratic, P = 0.006) and hydrogen sulfide (quadratic, P = 0.006) in the excreta. In addition, dietary multi-enzyme notably elevated (P < 0.05) the mRNA expression of nutrient transporter genes, including peptide transporter 1 (PePT1), Na-dependent neutral amino acid transporter (B0AT), glucose transporter 2 (GLUT2), and fatty acid binding protein1 (FABP1). These findings suggest that dietary supplementation with multienzymes can improve the efficiency of feed utilization, and the digestion and absorption of nutrients and reduce excreta gas emission. Furthermore, this study provides a theoretical basis for advancing the use of multienzymes in broiler production.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3