Potential negative effects of genomic selection

Author:

Misztal Ignacy1ORCID,Lourenco Daniela1ORCID

Affiliation:

1. Department of Animal and Dairy Science, University of Georgia , Athens, GA 30602 , USA

Abstract

Abstract Initial findings on genomic selection (GS) indicated substantial improvement for major traits, such as performance, and even successful selection for antagonistic traits. However, recent unofficial reports indicate an increased frequency of deterioration of secondary traits. This phenomenon may arise due to the mismatch between the accelerated selection process and resource allocation. Traits explicitly or implicitly accounted for by a selection index move toward the desired direction, whereas neglected traits change according to the genetic correlations with selected traits. Historically, the first stage of commercial genetic selection focused on production traits. After long-term selection, production traits improved, whereas fitness traits deteriorated, although this deterioration was partially compensated for by constantly improving management. Adding these fitness traits to the breeding objective and the used selection index also helped offset their decline while promoting long-term gains. Subsequently, the trend in observed fitness traits was a combination of a negative response due to genetic antagonism, positive response from inclusion in the selection index, and a positive effect of improving management. Under GS, the genetic trends accelerate, especially for well-recorded higher heritability traits, magnifying the negatively correlated responses for fitness traits. Then, the observed trend for fitness traits can become negative, especially because management modifications do not accelerate under GS. Additional deterioration can occur due to the rapid turnover of GS, as heritabilities for production traits can decline and the genetic antagonism between production and fitness traits can intensify. If the genetic parameters are not updated, the selection index will be inaccurate, and the intended gains will not occur. While the deterioration can accelerate for unrecorded or sparsely recorded fitness traits, GS can lead to an improvement for widely recorded fitness traits. In the context of GS, it is crucial to look for unexpected changes in relevant traits and take rapid steps to prevent further declines, especially in secondary traits. Changes can be anticipated by investigating the temporal dynamics of genetic parameters, especially genetic correlations. However, new methods are needed to estimate genetic parameters for the last generation with large amounts of genomic data.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3