MiRNA-21-5p induces chicken hepatic lipogenesis by targeting NFIB and KLF3 to suppress the PI3K/AKT signaling pathway

Author:

Wu Yamei12,Zhao Jing12,Cui Can12,Zhang Yao12,Zhu Qing12,Han Shunshun12,Yang Chaowu3,Yin Huadong12

Affiliation:

1. Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, Sichuan , China

2. Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu 611130, Sichuan , China

3. Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy , Chengdu 610066 , China

Abstract

Abstract The liver plays a critical role in metabolic activity and is the body’s first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.

Funder

Sichuan Science and Technology Program

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3