A role for miRNAs in the regulation of brown adipose tissue whitening in goats (Capra Hircus)

Author:

Zhao Le1ORCID,Li Minhao1,Xiao Min1,Chen Meixi1,Yang Haili1,Zhao Yongju1ORCID

Affiliation:

1. College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science , Chongqing 400715 , China

Abstract

Abstract A study of the mechanism of and metabolic regulation of brown adipose tissue (BAT) production is important for improving the survival rate of young animals. In the present study, we observed that perirenal adipose tissue in goats undergoes a rapid BAT whitening after birth. However, the underlying regulatory mechanism remains unknown. To address this further, we investigated the role of miRNAs in regulating the whitening process of BAT in goats. First, we identified the dynamic expression profiles of miRNAs during the whitening of BAT in Dazu black goat using RNA-seq. We identified a total of 1374 miRNAs, including 408 existing miRNAs, 693 known miRNAs, and 273 novel miRNAs. By analysis of the differentially expressed miRNAs (DE miRNAs), we found that 102 highly expressed miRNAs, including chi-miR-144-3p, chi-miR-144-5p, chi-miR-378-5p, chi-miR-136-3p, chi-miR-381, chi-miR-323b, chi-miR-1197-3p, chi-miR-411b-3p, and chi-miR-487a-3p, were enriched in BAT. In addition, 60 highly expressed miRNAs, including chi-miR-184, chi-miR-193a, chi-miR-193b-3p, chi-let-7c-5p, and chi-let-7e-5p, were enriched in white fat-like tissue. An analysis of miRNAs that were linearly downregulated (profile 0) or linearly upregulated (profile 19) over the D0—D28 period found that these DE miRNAs were mainly enriched in the Hippo signaling pathway, Cytokine-cytokine receptor interactions, and the TGF-beta signaling pathway. Furthermore, we confirmed that chi-let-7e-5p promotes the proliferation and differentiation of brown adipocytes. These results should facilitate a better understanding of the molecular regulation of miRNAs involved in BAT whitening in goats.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3