New methods of structural break detection and an ensemble approach to analyse exchange rate volatility of Indian rupee during coronavirus pandemic

Author:

Mareeswaran M1,Sen Shubhajit2,Deb Soudeep3

Affiliation:

1. Finance & Accounting Area, Indian Institute of Management Bangalore , Bengaluru , India

2. Department of Statistics, North Carolina State University , Raleigh, NC , USA

3. Decision Sciences Area, Indian Institute of Management Bangalore, Bengaluru, India

Abstract

Abstract In this work, we develop a methodology to detect structural breaks in multivariate time series data using the t-distributed stochastic neighbour embedding (t-SNE) technique and non-parametric spectral density estimates. By applying the proposed algorithm to the exchange rates of Indian rupee against four primary currencies, we establish that the coronavirus pandemic (COVID-19) has indeed caused a structural break in the volatility dynamics. Next, to study the effect of the pandemic on the Indian currency market, we provide a compact and efficient way of combining three models, each with a specific objective, to explain and forecast the exchange rate volatility. We find that a forward-looking regime change makes a drop in persistence, while an exogenous shock like COVID-19 makes the market highly persistent. Our analysis shows that although all exchange rates are found to be exposed to common structural breaks, the degrees of impact vary across the four series. Finally, we develop an ensemble approach to combine predictions from multiple models in the context of volatility forecasting. Using model confidence set procedure, we show that the proposed approach improves the accuracy from benchmark models. Relevant economic explanations to our findings are provided as well.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Social Sciences (miscellaneous),Statistics and Probability

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3