Disentangling positive and negative partisanship in social media interactions using a coevolving latent space network with attractors model

Author:

Zhu Xiaojing1,Caliskan Cantay2,Christenson Dino P3,Spiliopoulos Konstantinos1,Walker Dylan4,Kolaczyk Eric D5

Affiliation:

1. Department of Mathematics and Statistics, Boston University , Boston, MA , USA

2. Goergen Institute for Data Science, University of Rochester , Rochester, NY , USA

3. Department of Political Science, Washington University in St. Louis , St. Louis, MO , USA

4. Argyros School of Business and Economics, Chapman University , Orange, CA , USA

5. Department of Mathematics and Statistics, McGill University , Montreal, QC , Canada

Abstract

Abstract We develop a broadly applicable class of coevolving latent space network with attractors (CLSNA) models, where nodes represent individual social actors assumed to lie in an unknown latent space, edges represent the presence of a specified interaction between actors, and attractors are added in the latent level to capture the notion of attractive and repulsive forces. We apply the CLSNA models to understand the dynamics of partisan polarization in US politics on social media, where we expect Republicans and Democrats to increasingly interact with their own party and disengage with the opposing party. Using longitudinal social networks from the social media platforms Twitter and Reddit, we quantify the relative contributions of positive (attractive) and negative (repulsive) forces among political elites and the public, respectively.

Funder

ARO

NSF

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Social Sciences (miscellaneous),Statistics and Probability

Reference77 articles.

1. Is polarization a myth?;Abramowitz;The Journal of Politics,2008

2. The rise of negative partisanship and the nationalization of US elections in the 21st century;Abramowitz;Electoral Studies,2016

3. Negative partisanship: Why Americans dislike parties but behave like rabid partisans;Abramowitz;Political Psychology,2018

4. The politics of mate choice;Alford;The Journal of Politics,2011

5. A new partisan voter;Bafumi;The Journal of Politics,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3