Urban environments have species-specific associations with invasive insect herbivores

Author:

Buenrostro Jacqueline H1ORCID,Hufbauer Ruth A12ORCID

Affiliation:

1. Department of Agricultural Biology, Colorado State University , Fort Collins, CO 80523-1177, USA

2. Graduate Degree Program in Ecology, Colorado State University , Fort Collins, CO 80523-1021, USA

Abstract

Abstract Urban forests are critically important for providing ecosystem services to rapidly expanding urban populations, but their health is threatened by invasive insect herbivores. To protect urban forests against invasive insects and support future delivery of ecosystem services, we must first understand the factors that affect insect density across urban landscapes. This study explores how a variety of environmental factors that vary across urban habitats influence density of invasive insects. Specifically, we evaluate how vegetational complexity, distance to buildings, impervious surface, canopy temperature, host availability and density of co-occurring herbivores impact three invasive pests of elm trees: the elm leaf beetle (Xanthogaleruca luteola), the elm flea weevil (Orchestes steppensis) and the elm leafminer (Fenusa ulmi). Insect responses to these factors were species-specific, and all environmental factors were associated with density of at least one pest species except for distance to buildings. Elm leafminer density decreased with higher temperatures and was influenced by an interaction between vegetational complexity and impervious surface. Elm flea weevil density increased with greater host availability, and elm leaf beetle density increased with higher temperatures. Both elm leaf beetle and elm flea weevil density decreased with greater leafminer density, suggesting that insect density is mediated by species interactions. These findings can be used to inform urban pest management and tree care efforts, making urban forests more resilient in an era when globalization and climate change make them particularly vulnerable to attack.

Funder

USDA National Institute of Food and Agriculture, Hatch project

Publisher

Oxford University Press (OUP)

Subject

Urban Studies,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3