Systematic in vitro optimization of antimicrobial peptides against Escherichia coli

Author:

Shukri Ali1,Carroll Amanda C1,Collins Ryan1,Charih Francois2,Wong Alex1,Biggar Kyle K1

Affiliation:

1. Institute of Biochemistry and Department of Biology, Carleton University , Ottawa, Ontario , Canada K1S 5B6

2. Department of Systems and Computer Engineering, Carleton University , Ottawa, Ontario , Canada K1S 5B6

Abstract

Abstract Objectives Antimicrobial resistance is a growing concern and claims over 1 million lives per year. The discovery of new antimicrobial drugs is expensive and often generates low profitability, with very low success rates. One way to combat this is by the improvement of known antimicrobials, such as antimicrobial peptides (AMPs). The aim of this study was to improve the antimicrobial activities of two known AMPs, UyCT3 and indolicidin, with the use of peptide libraries and growth curves. Methods Peptide permutation libraries were synthesized for two AMPs, indolicidin and UyCT3, which included 520 peptides. These peptides were subsequently tested against MG1655-K12, to which subsequent peptide design was performed, then tested against three clinically Gram-negative relevant drug-resistant isolates. Best-performing candidates were subjected to a haemolysis assay for toxicity validation. Results Single amino acid permutations of UyCT3 and indolicidin were sufficient to inhibit growth of MG1655-K12, and subsequent generations of peptide design were able to inhibit growth of clinical isolates at concentrations as low as 5 µM. Our best-performing AMP, UyCT3I5A, W6Y, K10I, F13I, was not seen to be toxic towards sheep RBCs. Conclusions The efficacy of the AMPs improved with the use of our peptide library technology, whereby an AMP was found that inhibited bacterial growth of clinical Gram-negative isolates 4-fold better than its WT counterpart.

Funder

National Science and Engineering Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3