MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study microbiota-dependent response to antibiotic treatment

Author:

Hobson C A1ORCID,Vigue L1,Naimi S2,Chassaing B2,Magnan M1,Bonacorsi S13,Gachet B1,El Meouche I1,Birgy A13,Tenaillon O1

Affiliation:

1. IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France

2. INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France

3. Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France

Abstract

Abstract Background Antimicrobial drugs are mostly studied for their impact on emergence of bacterial antibiotic resistance, but their impact on the gut microbiota is also of tremendous interest. In vitro gut models are important tools to study such complex drug–microbiota interactions in humans. Methods The MiniBioReactor Array (MBRA) in vitro microbiota system; a single-stage continuous flow culture model, hosted in an anaerobic chamber; was used to evaluate the impact of three concentrations of a third-generation cephalosporin (ceftriaxone) on faecal microbiota from two healthy donors (treatment versus control: three replicates per condition). We conducted 16S microbiome profiling and analysed microbial richness, diversity and taxonomic changes. β-Lactamase activities were evaluated and correlated with the effects observed in the MBRA in vitro system. Results The MBRA preserved each donor’s specificities, and differences between the donors were maintained through time. Before treatment, all faecal cultures belonging to the same donor were comparable in composition, richness, and diversity. Treatment with ceftriaxone was associated with a decrease in α-diversity, and an increase in β-diversity index, in a concentration-dependent manner. The maximum effect on diversity was observed after 72 h of treatment. Importantly, one donor had a stronger microbiota β-lactamase activity that was associated with a reduced impact of ceftriaxone on microbiota composition. Conclusions MBRA can reliably mimic the intestinal microbiota and its modifications under antibiotic selective pressure. The impact of the treatment was donor- and concentration-dependent. We hypothesize these results could be explained, at least in part, by the differences in β-lactamase activity of the microbiota itself. Our results support the relevance and promise of the MBRA system to study drug–microbiota interactions.

Funder

ARC Foundation

FRM

ANR GeWiEp

European Research Council

IdEx Université de Paris

Kenneth Rainin Foundation

INSERM

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3