Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity

Author:

Lai Yanqiu1234,Zhou Xiaoya1234,Guo Fuding1234,Jin Xiaoxing1234,Meng Guannan1234,Zhou Liping1234,Chen Hu1234,Liu Zhihao1234,Yu Lilei1234ORCID,Jiang Hong1234

Affiliation:

1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China

2. Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China

3. Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China

4. Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China

Abstract

Abstract Aims The clinical use of antitumour agent doxorubicin (DOX) is hampered by its dose-dependent cardiotoxicity. Development of highly efficient and safe adjuvant intervention for preventing DOX-induced adverse cardiac events is urgently needed. We aimed to investigate whether transcutaneous vagal nerve stimulation (tVNS) plays a cardio-protective role in DOX-induced cardiotoxicity. Methods and results Healthy male adult Sprague Dawley rats were used in the experiment and were randomly divided into four groups including control, DOX, tVNS, and DOX+tVNS groups. A cumulative dose of 15 mg/kg DOX was intraperitoneally injected into rats to generate cardiotoxicity. Non-invasive tVNS was conducted for 6 weeks (30 min/day). After 6-week intervention, the indices from the echocardiography revealed that tVNS significantly improved left ventricular function compared to the DOX group. The increased malondialdehyde and Interleukin-1β, and decreased superoxide dismutase were observed in the DOX group, while tVNS significantly prevented these changes. From cardiac histopathological analysis, the DOX+tVNS group showed a mild myocardial damage, and decreases in cardiac fibrosis and myocardial apoptosis compared to the DOX group. Heart rate variability analysis showed that tVNS significantly inhibited DOX-induced sympathetic hyperactivity compared to the DOX group. Additionally, the results of RNA-sequencing analysis showed that there were 245 differentially expressed genes in the DOX group compared to the control group, among which 39 genes were down-regulated by tVNS and most of these genes were involved in immune system. Moreover, tVNS significantly down-regulated the relative mRNA expressions of chemokine-related genes and macrophages recruitment compared to the DOX group. Conclusion These results suggest that tVNS prevented DOX-induced cardiotoxicity by rebalancing autonomic tone, ameliorating cardiac dysfunction and remodelling. Notably, crosstalk between autonomic neuromodulation and innate immune cells macrophages mediated by chemokines might be involved in the underlying mechanisms.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3