Arrhythmogenesis in the aged heart following ischaemia–reperfusion: role of transient receptor potential vanilloid 4

Author:

Peana Deborah1,Polo-Parada Luis12,Domeier Timothy L1ORCID

Affiliation:

1. Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA

2. Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA

Abstract

Abstract Aims Cardiomyocyte Ca2+ homoeostasis is altered with ageing and predisposes the heart to Ca2+ intolerance and arrhythmia. Transient receptor potential vanilloid 4 (TRPV4) is an osmotically activated cation channel with expression in cardiomyocytes of the aged heart. The objective of this study was to examine the role of TRPV4 in Ca2+ handling and arrhythmogenesis following ischaemia–reperfusion (I/R), a pathological scenario associated with osmotic stress. Methods and results Cardiomyocyte membrane potential was monitored prior to and following I/R in Langendorff-perfused hearts of Aged (19–28 months) male and female C57BL/6 mice ± TRPV4 inhibition (1 μM HC067047, HC). Diastolic resting membrane potential was similar between Aged and Aged HC at baseline, but following I/R Aged exhibited depolarized diastolic membrane potential vs. Aged HC. The effects of TRPV4 on cardiomyocyte Ca2+ signalling following I/R were examined in isolated hearts of Aged cardiac-specific GCaMP6f mice (±HC) using high-speed confocal fluorescence microscopy, with cardiomyocytes of Aged exhibiting an increased incidence of pro-arrhythmic Ca2+ signalling vs. Aged HC. In the isolated cell environment, cardiomyocytes of Aged responded to sustained hypoosmotic stress (250mOsm) with an increase in Ca2+ transient amplitude (fluo-4) and higher incidence of pro-arrhythmic diastolic Ca2+ signals vs. Aged HC. Intracardiac electrocardiogram measurements in isolated hearts following I/R revealed an increased arrhythmia incidence, an accelerated time to ventricular arrhythmia, and increased arrhythmia score in Aged vs. Aged HC. Aged exhibited depolarized resting membrane potential, increased pro-arrhythmic diastolic Ca2+ signalling, and greater incidence of arrhythmia when compared with Young (3–5 months). Conclusion TRPV4 contributes to pro-arrhythmic cardiomyocyte Ca2+ signalling, electrophysiological abnormalities, and ventricular arrhythmia in the aged mouse heart.

Funder

National Heart Lung and Blood Institute at the National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3