Strategies for improving the lithium-storage performance of 2D nanomaterials

Author:

Mei Jun1,Zhang Yuanwen1,Liao Ting1,Sun Ziqi1ORCID,Dou Shi Xue2

Affiliation:

1. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, QLD 4001, Australia

2. Institute of Superconducting and Electronic Materials, University of Wollongong, NSW 2500, Australia

Abstract

Abstract 2D nanomaterials, including graphene, transition metal oxide (TMO) nanosheets, transition metal dichalcogenide (TMD) nanosheets, etc., have offered an appealing and unprecedented opportunity for the development of high-performance electrode materials for lithium-ion batteries (LIBs). Although significant progress has been made on 2D nanomaterials for LIB applications in the recent years, some major challenges still exist for the direct use of these sheet-like nanomaterials, such as their serious self-agglomerating tendency during electrode fabrication and low conductivity as well as the large volume changes over repeated charging–discharging cycles for most TMOs/TMDs, which have resulted in large irreversible capacity, low initial Coulombic efficiency and fast capacity fading. To address these issues, considerable progress has been made in the exploitation of 2D nanosheets for enhanced lithium storage. In this review, we intend to summarize the recent progress on the strategies for enhancing the lithium-storage performance of 2D nanomaterials, including hybridization with conductive materials, surface/edge functionalization and structural optimization. These strategies for manipulating the structures and properties of 2D nanomaterials are expected to meet the grand challenges for advanced nanomaterials in clean energy applications and thus provide access to exciting materials for achieving high-performance next-generation energy-storage devices.

Funder

Australian Research Council

Discovery Early Career Researcher

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3