Angel: a new large-scale machine learning system

Author:

Jiang Jie12,Yu Lele1,Jiang Jiawei1,Liu Yuhong2,Cui Bin1

Affiliation:

1. Key Lab of High Confidence Software Technologies (MOE), School of EECS, Peking University, Beijing 100871, China

2. Data Platform, Tencent Inc., Shenzhen 518057, China

Abstract

Abstract Machine Learning (ML) techniques now are ubiquitous tools to extract structural information from data collections. With the increasing volume of data, large-scale ML applications require an efficient implementation to accelerate the performance. Existing systems parallelize algorithms through either data parallelism or model parallelism. But data parallelism cannot obtain good statistical efficiency due to the conflicting updates to parameters while the performance is damaged by global barriers in model parallel methods. In this paper, we propose a new system, named Angel, to facilitate the development of large-scale ML applications in production environment. By allowing concurrent updates to model across different groups and scheduling the updates in each group, Angel can achieve a good balance between hardware efficiency and statistical efficiency. Besides, Angel reduces the network latency by overlapping the parameter pulling and update computing and also utilizes the sparseness of data to avoid the pulling of unnecessary parameters. We also enhance the usability of Angel by providing a set of efficient tools to integrate with application pipelines and provisioning efficient fault tolerance mechanisms. We conduct extensive experiments to demonstrate the superiority of Angel.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Shenzhen Government Research Project

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference37 articles.

1. Tencentrec: Real-time stream recommendation in practice;Huang;Proceedings of SIGMOD Conference 2015,2015

2. Real-time video recommendation exploration;Huang;Proceedings of, SIGMOD Conference 2016,2016

3. Spark: cluster computing with working sets;Zaharia;Proceedings of HotCloud 2010,2010

4. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing;Zaharia;Proceedings NSDI Conference 2012,2012

5. Petuum: a new platform for distributed machine learning on big data;Xing;IEEE Trans Big Data,2015

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3