Estimation and Inference Are Missing Data Problems: Unifying Social Science Statistics via Bayesian Simulation

Author:

Jackman Simon

Abstract

Bayesian simulation is increasingly exploited in the social sciences for estimation and inference of model parameters. But an especially useful (if often overlooked) feature of Bayesian simulation is that it can be used to estimate any function of model parameters, including “auxiliary” quantities such as goodness-of-fit statistics, predicted values, and residuals. Bayesian simulation treats these quantities as if they were missing data, sampling from their implied posterior densities. Exploiting this principle also lets researchers estimate models via Bayesian simulation where maximum-likelihood estimation would be intractable. Bayesian simulation thus provides a unified solution for quantitative social science. I elaborate these ideas in a variety of contexts: these include generalized linear models for binary responses using data on bill cosponsorship recently reanalyzed in Political Analysis, item—response models for the measurement of respondent's levels of political information in public opinion surveys, the estimation and analysis of legislators' ideal points from roll-call data, and outlier-resistant regression estimates of incumbency advantage in U.S. Congressional elections

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Reference42 articles.

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Appendix;Positioning Women in Conflict Studies;2024-09-13

2. Women’s Inclusion and Political Violence;Positioning Women in Conflict Studies;2024-09-13

3. Solving the Concept Stretching Problem;Positioning Women in Conflict Studies;2024-09-13

4. Notes;Positioning Women in Conflict Studies;2024-09-13

5. Conclusion;Positioning Women in Conflict Studies;2024-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3