Toward Precision Medicine for Smoking Cessation: Developing a Neuroimaging-Based Classification Algorithm to Identify Smokers at Higher Risk for Relapse

Author:

Frank David W1ORCID,Cinciripini Paul M1,Deweese Menton M2,Karam-Hage Maher1,Kypriotakis George1,Lerman Caryn3,Robinson Jason D1ORCID,Tyndale Rachel F4,Vidrine Damon J5,Versace Francesco1

Affiliation:

1. Department of Behavioral Science, University of Texas MD Anderson Cancer Center, Houston, TX

2. Department of Teaching and Learning, Peabody College at Vanderbilt University, Nashville, TN

3. Department of Psychiatry, University of Pennsylvania, Philadelphia, PA

4. Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada

5. Stephenson Cancer Center, Oklahoma Tobacco Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK

Abstract

Abstract Introduction By improving our understanding of the neurobiological mechanisms underlying addiction, neuroimaging research is helping to identify new targets for personalized treatment interventions. When trying to quit, smokers with larger electrophysiological responses to cigarette-related, compared with pleasant, stimuli (“C > P”) are more likely to relapse than smokers with the opposite brain reactivity profile (“P > C”). Aim and Method The goal was to (1) build a classification algorithm to identify smokers characterized by P > C or C > P neuroaffective profiles and (2) validate the algorithm’s classification outcomes in an independent data set where we assessed both smokers’ electrophysiological responses at baseline and smoking abstinence during a quit attempt. We built the classification algorithm applying discriminant function analysis on the event-related potentials evoked by emotional images in 180 smokers. Results The predictive validity of the classifier showed promise in an independent data set that included new data from 177 smokers interested in quitting; the algorithm classified 111 smokers as P > C and 66 as C > P. The overall abstinence rate was low; 15 individuals (8.5% of the sample) achieved CO-verified 12-month abstinence. Although individuals classified as P > C were nearly 2.5 times more likely to be abstinent than smokers classified as C > P (12 vs. 3, or 11% vs. 4.5%), this result was nonsignificant, preliminary, and in need of confirmation in larger trials. Conclusion These results suggest that psychophysiological techniques have the potential to advance our knowledge of the neurobiological underpinnings of nicotine addiction and improve clinical applications. However, larger sample sizes are necessary to reliably assess the predictive ability of our algorithm. Implications We assessed the clinical relevance of a neuroimaging-based classification algorithm on an independent sample of smokers enrolled in a smoking cessation trial and found those with the tendency to attribute more relevance to rewards than cues were nearly 2.5 times more likely to be abstinent than smokers with the opposite brain reactivity profile (11% vs. 4.5%). Although this result was not statistically significant, it suggests our neuroimaging-based classification algorithm can potentially contribute to the development of new precision medicine interventions aimed at treating substance use disorders. Regardless, these findings are still preliminary and in need of confirmation in larger trials.

Funder

National Institute on Drug Abuse

MD Anderson’s Cancer Center Support

National Cancer Institute

Canada Research Chair in Pharmacogenomics

National Institutes of Health

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3