Artificial Selection to a Nonlethal Cold Stress in Trogoderma variabile Shows Associations With Chronic Cold Stress and Body Size

Author:

Gerken Alison RORCID,Abts Shelby R1,Scully Erin D1,Campbell James F1

Affiliation:

1. USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS

Abstract

Abstract Extreme temperature has been used as an alternative to chemical treatments for stored product pests for years. Resistance to heat or cold treatments has not been documented in stored product insects, but repeated use of ineffective treatments could lead to adaptive tolerance. Trogoderma variabile (Dermestidae) is a common pest of stored products, and the larval stage is highly resistant to cold and destructive. We artificially selected populations by inducing chill coma at four different cold temperature treatments: 3 and 5 h at −10°C and 3 and 5 h at 0°C. Recovery time was highly heritable after selection for seven generations for decreased recovery time (cold tolerance) and increased recovery time (cold susceptibility) at all time and temperature combinations. Three replicate populations for each time and temperature combination varied substantially, suggesting different mutations in each population were probably responsible for selected phenotypes. Body size decreased in populations selected for cold susceptibility compared with those selected for cold tolerance and survivorship to long-term cold stress increased in the cold-tolerant populations compared with the susceptible populations. After the cessation of the selection experiment, cold tolerance dissipated within four generations from the populations at −10°C, but was maintained in populations exposed to 0°C. Our results suggest that warehouse beetles can adapt to cold stress quickly, but in the absence of cold stress, the proportion of cold-tolerant/susceptible individuals is quickly reduced, suggesting that some of the mutations responsible for these phenotypes may be associated with fitness costs under normal conditions.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3