Affiliation:
1. Clean Energy Technologies Research Institute (CETRI), University of Regina, Regina, SK, Canada
Abstract
Abstract
Mass-transfer studies of catalyst-aided CO2 absorption and desorption were performed in a full-cycle, bench-scale pilot plant to improve CO2 absorption using 5M MEA, 5M MEA-2M MDEA and 2M BEA-2M AMP. A solid-base catalyst, K/MgO, and an acid catalyst, HZSM-5, were used to facilitate absorption and desorption, respectively. Absorption and desorption mass-transfer performance was presented in terms of the overall mass-transfer coefficient of the gas side (KGav) and liquid side (KLav), respectively. For non-catalytic runs, the highest KGaV and KLaV were 0.086 Kmolm3.kPa.hr and 0.785 1hr for 2M BEA-2M AMP solvent. The results showed 38.7% KGav and 23.6% KLav increase for 2M BEA-2M AMP with only HZSM-5 catalyst in desorber and a 95% KGaV and 45% KLaV increase for both K/MgO catalyst and HZSM-5 catalyst. This was attributed to the role of K/MgO in bonding loosely with CO2 and making it available for the amine reaction.
Funder
Natural Science and Engineering Research Council of Canada
Canada Foundation for Innovation
Clean Energy Technologies Research Institute
Publisher
Oxford University Press (OUP)
Subject
Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献