Retracted: AKAP12 mediates PKA-induced phosphorylation of ATR to enhance nucleotide excision repair

Author:

Jarrett Stuart G.1,Wolf Horrell Erin M.12,D'Orazio John A.12345

Affiliation:

1. Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA

2. Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA

3. Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA

4. Department of Pharmacology and Nutritional Science, University of Kentucky College of Medicine, Lexington, KY 40536, USA

5. Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, USA

Abstract

Abstract Loss-of-function in melanocortin 1 receptor (MC1R), a GS protein-coupled receptor that regulates signal transduction through cAMP and protein kinase A (PKA) in melanocytes, is a major inherited melanoma risk factor. Herein, we report a novel cAMP-mediated response for sensing and responding to UV-induced DNA damage regulated by A-kinase-anchoring protein 12 (AKAP12). AKAP12 is identified as a necessary participant in PKA-mediated phosphorylation of ataxia telangiectasia mutated and Rad3-related (ATR) at S435, a post-translational event required for cAMP-enhanced nucleotide excision repair (NER). Moreover, UV exposure promotes ATR-directed phosphorylation of AKAP12 at S732, which promotes nuclear translocation of AKAP12–ATR-pS435. This complex subsequently recruits XPA to UV DNA damage and enhances 5΄ strand incision. Preventing AKAP12's interaction with PKA or with ATR abrogates ATR-pS435 accumulation, delays recruitment of XPA to UV-damaged DNA, impairs NER and increases UV-induced mutagenesis. Our results define a critical role for AKAP12 as an UV-inducible scaffold for PKA-mediated ATR phosphorylation, and identify a repair complex consisting of AKAP12–ATR-pS435-XPA at photodamage, which is essential for cAMP-enhanced NER.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3