Sustained air pollution exposures, fasting plasma glucose, glycated haemoglobin, prevalence and incidence of diabetes: a nationwide study in China

Author:

Liu Feifei12,Zhang Ke12,Chen Gongbo3,He Jie4,Pan Mengnan12,Zhou Feng12,Wang Xiangxiang12,Tong Jiahui12,Guo Yuming5,Li Shanshan5,Xiang Hao12ORCID

Affiliation:

1. Department of Global Health, School of Public Health , Wuhan, China

2. Global Health Institute, School of Public Health, Wuhan University , Wuhan, China

3. Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University , Guangzhou, Guangdong, China

4. Department of Environmental Health Sciences, School of Public Health, University of Michigan-Ann Arbor , Ann Arbor, USA

5. School of Public Health and Preventive Medicine, Monash University , Melbourne, VIC, Australia

Abstract

Abstract Background Evidence remains limited and inconsistent for the associations between sustained air pollution exposures and diabetes development. This study aimed to determine the potential effects of particulate matter with a diameter of ≤10 micrometres (PM10), particulate matter with a diameter of ≤2.5 micrometres (PM2.5) and nitrogen dioxide (NO2) on alterations of fasting plasma glucose (FPG), glycated haemoglobin (HbA1c), in particular, on prevalence and incidence of diabetes. Methods Cross-sectional analyses were conducted based on 9628 participants aged ≥45 years from the baseline survey (2011) of the China Health and Retirement Longitudinal Study (CHARLS), whereas cohort analyses were based on 3510 individuals without diabetes at baseline in the third survey (2015). Residences of participants were geocoded and the air pollution exposures were estimated using a satellite-based spatiotemporal model. Linear, logistic and modified Poisson regression models, adjusting for multiple confounders, were applied to assess the associations between air pollution and FPG, HbA1c, prevalence and incidence of diabetes, respectively. Results Associations between PM10, PM2.5 and increased levels of FPG and HbA1c were identified. The levels of FPG and HbA1c increased by 0.025 mmol/L (95% CI: 0.007, 0.044) and 0.011 mmol/L (95% CI: 0.002, 0.019), respectively, for a 10-μg/m3 increase in PM10, and the levels of FPG and HbA1c increased by 0.061 mmol/L (95% CI: 0.028, 0.096) and 0.016 mmol/L (95% CI: 0.000, 0.031), respectively, for a 10-μg/m3 increase in PM2.5. There were also positive associations between diabetes prevalence and PM2.5 and PM10. In the cohort analyses, PM10, PM2.5 and NO2 were associated with a higher incidence of diabetes. Conclusion Air pollution was allied to diabetes development in elderly Chinese populations. Considering the impact of the dramatic increase in the incidence and prevalence of diabetes in China, interventions to improve air quality are urgently needed.

Funder

Bill & Melinda Gates Foundation

Wuhan Center for Disease Control &Prevention

Wuhan Municipal Health Commission

Fundamental Research Funds for the Central Universities

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3