Medial Gap: A Structural Factor at the Arterial Bifurcation Aggravating Hemodynamic Insult

Author:

Chen Bo12ORCID,Tao Wengui12,Li Shifu12,Zeng Ming12,Zhang Liyang12,Huang Zheng12,Chen Fenghua12ORCID

Affiliation:

1. From the Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China

2. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China

Abstract

Abstract Previous studies have reported that intracranial aneurysms frequently occur adjacent to the medial gap. However, the role of the medial gap in aneurysm formation is controversial. We designed this study to explore the potential role of the medial gap in aneurysm formation. Widened artery bifurcations with or without medial gaps were microsurgically created and pathologically stained in the carotid arteries of 30 rats. Numerical artery bifurcation models were constructed, and bidirectional fluid-solid interaction analyses were performed. Animal experiments showed that the apexes of widened bifurcations with a medial gap were prone to being insulted by blood flow compared to those without a medial gap. The bidirectional fluid-solid interaction analyses indicated that artery bifurcations with the medial gap exhibited higher wall shear stress (WSS) and von Mises stress (VMS) at the apex of the bifurcation. The disparity of stress between the gap and no-gap model was larger for widened bifurcations, peaking at 180° with a maximum of 1.9 folds. The maximum VMS and relatively high WSS were located at the junction between the medial gap and the adjacent arterial wall. Our results suggest that the medial gap at the widened arterial bifurcation may promote aneurysm formation.

Funder

Fundamental Research Funds for the Central Universities of Central South University

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3